DECLARATION OF MAGNE “MAX” NERHEIM
REGARDING TASER® X26E™ CONDUCTED ENERGY WEAPON ("CEW")
OPERATIONAL BASICS, CAPABILITIES AND LIMITATIONS

I, Magne “Max” Nerheim, declare and state as follows:

1. I am a competent adult over the age of 18 and have personal knowledge of the following facts.

2. I am Vice President of Research and Technical Fellow for Axon Enterprise, Inc. ("Axon"), formerly (name changed April 5, 2017) TASER International, Inc. ("TASER"), stationed at its corporate headquarters in Scottsdale, Arizona. I have held this position since August 2009.

3. I received my Bachelor (1988) and Master (1991) of Science Degrees in Electrical Engineering from Arizona State University in Tempe, Arizona.

4. I began working as a consultant for TASER in 1998 and was hired as the company’s first full-time electrical engineer in 2002. I served as TASER’s Electrical Engineering Manager from April 2002 to December 2004, and as its Vice President of Research and Development from December 2004 to August 2009, when I was promoted to my present position.

5. I designed the TASER® M26™ CEW (Conducted Energy Weapon, synonymous with Electronic Control Device or “ECD”) released in 1999, the first electrical weapon to incorporate TASER’s patented Neuromuscular Disruption or Neuro-Muscular Incapacitation (“NMI”) technology that affects both the sensory and motor nervous systems to cause incapacitation.

6. I am an inventor on 40 U.S. Patents, including the Shaped Pulse™ waveform technology (Pat. 6,999,295) utilized by the TASER X26E™ CEW released in 2003, which allowed
a substantial reduction in CEW size and power consumption. I am therefore intimately familiar with the design, specifications, capabilities and limitations of the TASER X26E CEW.

7. I also directed the development and launched the TASER CAM™ incident audio/video recording system in 2007.

I. X26E CEW APPLICATION MODES.

8. In the field, the TASER X26E CEW may be applied to a person in three ways:

(1) **Probe-Deployment Mode**, where two small metal darts are expelled from a cartridge via compressed nitrogen, with electrical impulses transmitted into the target through very thin insulated trailing wires;

![CEW probes deploying through green blast doors](image)

(2) **Drive-Stun Mode** (also referred to as “contact” or “touch” mode), in which the front of the CEW is physically pressed against the target utilizing the fixed electrodes on the front of the X26E CEW without a cartridge or the fixed rounded recessed electrodes on the sides of an expended cartridge; and
(3) **Three- or Four-Point Activation** that combines a probe deployment with a follow up drive stun to potentially combine CEW effects

9. In a successful probe deployment, the CEW is designed to primarily work by motor-nerve mediated stimulation of skeletal muscles. The TASER X26E CEW is designed to transmit stimuli through very short duration (≈125 microseconds ("µs")), low charge (≈100 microcoulombs ("µC")), low energy (≈ 0.1 joules), and low power (≈ 1.9 watts) electrical pulses to interfere with the command and control systems of the body to temporarily induce NMI of the target.

10. To achieve NMI an adequate probe spread is required to ensure major muscle groups between the darts are affected by the delivered electrical charge. As reflected in the following TASER training slide, the bottom probe is deployed at an 8-degree downward angle (for cartridges with a range of ≤ 25 feet) resulting in a probe spread of approximately 1 foot for every 7 feet of distance from the front of the CEW cartridge to the target:

The optimum CEW deployment range is 7 to 15 feet. When deployed at close range, the probe spread may be insufficient to cause NMI.
11. To aid officers in deployment accuracy, the X26E CEW is equipped with a LASER sight that emits a red dot on the intended target (when selected and activated). The top probe generally impacts the target near the LASER dot. Impact points may vary based on wind, subject and officer movements, or other variables.

12. In drive-stun (touch/contact) mode without a cartridge attached, electrical impulses are transmitted superficially through two fixed electrodes on the front of the CEW, as pictured below. The electrodes are 1.6 inches (4 centimeters (“cm”)) apart.
A drive stun may also be applied with an expended (empty) cartridge still attached to the CEW. In this instance, electrical impulses are transmitted through two fixed electrodes on the sides of the cartridge, which are 1.77 inches (4.5 cm) apart.

Because the electrical current in a drive-stun application is confined to such a small electrical stimulation area between or very close to the two electrodes on the surface of the skin, it does not create any significant muscle mass involvement and does not result in NMI. Thus, a CEW drive stun is strictly a pain compliance tool. The illustration below depicts the path and depth of delivered electrical charge from a CEW drive-stun based upon finite-element modelling:¹

14. It is possible, however, to use a drive stun following and in connection with a probe deployment to attempt to achieve NMI in what is known as a “3-point” or “4-point” stun. If only one probe contacts the target, the user may drive stun the subject with the expended probe cartridge still attached to the CEW to an area of the body away from the probe contact point to complete the circuit and increase the probability of inducing NMI. In this circumstance, the electricity flows between the two fixed electrodes on the sides of the expended cartridge affixed to the CEW and the single probe embedded in the subject or the subject’s clothing in a 3-point contact. Similarly, if both probes contact the target but the probe spread is insufficient to cause NMI, as may happen with a close-range deployment, a follow up drive stun away from the probes in a 4-point contact
can effectively widen the muscle groups between the probes and the fixed electrodes to cause the intended NMI.

II. X26E CEW ELECTRICAL PRINCIPALS AND LIMITATIONS.

15. In order for a CEW to be effective in delivering an electrical charge to a person, the electricity must flow in a complete circuit. In a CEW, an electric current starts at a small battery power source, flows through an intact circuit, and must return to the power source. If there is no completed circuit, then no electric charge is delivered to the person. There are numerous reasons why a CEW may not have a completed or maintained circuit, including a miss with one or both probes, a dislodged probe, a clothing disconnect, or a broken wire.

16. In any given electric circuit, the total power is limited by and cannot exceed the output of its power supply. A TASER X26E CEW’s power source consists of a battery of two 3-volt cells (Duracell® CR123), such as those commonly used in some digital cameras.
17. Delivered electrical charge from a TASER CEW also is limited by the wire conductors between the TASER CEW and the target. The TASER CEW cartridge wires are very small (36 gauge, 127 microns (millionths of a meter)) in diameter, and are not capable of delivering large electrical currents that would require much larger wires such as automobile jumper cables or home electrical extension cords.

![CEW cartridge wire and U.S. dime](image)

18. CEW cartridges identified by their silver blast doors contain 21 feet of wire per probe and standard probes with 9 millimeter (mm) dart tips.

![9 mm Dart and U.S. Dime](image)

Cartridges containing 15 feet of wire have yellow blast doors, and 25-foot cartridges have green blast doors with XP 13 mm dart tips.
19. While the TASER X26E CEW produces an open-circuit peak voltage of 50,000 volts, the output voltage (what actually enters or is delivered to the body) is approximately 1,400 to 2,520 volts. Claims that a person is shocked with 50,000 volts are simply not true. Moreover, voltage is not a key measure of electrical safety. As examples, Van de Graff generators found in many science museums and grade schools discharge up to 20,000,000 volts without injury.

20. It is the total number of electrons delivered that matters, and the X26E CEW delivers $\approx 100 \ \mu C$ of charge at ≈ 19 pulses per second which yields an aggregate output of 0.0019 amperes ("A") (or 1.9 milliamperes ("mA")).
21. The TASER X26E CEW produces a complex shaped pulse. It delivers 19 +1/-2.5 pulses per second. Each pulse delivered from a TASER X26E CEW is 105 to 155 microseconds (millionths of a second) in duration. In a single second of time, a TASER X26E CEW is not delivering any electrical charge to the subject for ≈ 99.81% of the second.

22. The TASER X26E CEW meets all relevant sections of the American National Standards Institute (“ANSI”)\(^2\), International Electrotechnical Commission (“IEC”), Underwriter’s Laboratories (“UL”), European Norm (“EN”), British Standard (“BSI”), and Australian/New Zealand (“AUS/NZ”) electrical safety standards as they pertain to cardiac safety.\(^3\)

III. X26E CEW Accountability Features.

23. Pulling and releasing the X26E CEW trigger automatically activates a 5-second discharge cycle. The CEW operator may cut the cycle short at any time by placing the safety lever in the down (SAFE) position. As a safety factor, the operator also may extend the CEW discharge beyond 5 seconds by holding the trigger down. Releasing the trigger any time after 5 seconds will immediately stop the CEW discharge.

24. As an objective accountability measure, the X26E CEW has data download capabilities that record the date, time and duration of each CEW discharge. The data download shows discharges (trigger pulls) only, not whether the electrical charge was delivered to the subject. For example, if an officer only pulls and releases the trigger in probe mode, the download report will show a 5-second duration even if one probe misses the target such that there is no

\(^2\) ANSI/CPLSO-17-2017, Electrical Characteristics of ECDs and CEWs.

completed circuit and no delivered charge to the person. Similarly, in drive-stun mode, if an officer pulls and releases the trigger and presses the CEW against a subject for two seconds before the subject pulls away or the officer disengages and breaks the contact, the download report will still reflect a 5-second duration.

25. An X26E CEW data download reports the time when the firing sequence ends, not the time the trigger pull activates the discharge. Also, time is rounded up to the nearest second. Therefore, if the discharge is 4.01 to 5.00 seconds, the data download time will show a 5-second discharge duration.

26. The X26E CEW’s internal clock is run by the central microprocessor. It is initially set to Greenwich Mean Time (“GMT”) at the factory. Like most other clocks and watches, the CEW clock is subject to time drift, which ranges up to ± 4 minutes per month. When the X26E CEW is downloaded, the download software automatically adjusts the GMT time in the CEW to the local time zone set on the PC (when in Offline Mode), or to the user’s time zone setting in Evidence.com (when in Online Mode).

27. An X26E CEW may be equipped with a TASER-Cam™ recording device—a digital camera with audio mounted in the handle grip (circled in red below), replacing the standard digital power magazine (“DPM”). The camera and audio recording features are automatically activated when the CEW safety lever is moved to the ARMED position, and deactivated when the safety lever is returned to the down (SAFE) position.
The TASER-Cam has a boot-up time of approximately 1.6 seconds after the safety is removed.

28. All photographs and illustrations contained in this declaration are true and accurate representations.

I declare under penalty of perjury under the laws of the United States of America that the foregoing is true and correct.

Executed this 15th day of November, 2018 at Scottsdale, Arizona.

Magne "Max" Nerheim